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1. INTRODUCTION

The vibration of a linear elastica carrying any number of sprung masses has received
considerable interest in recent years, and has been studied by many authors [1}8]. While in
theory most of the proposed formalisms may be extended to solve for the natural
frequencies of a linear structure carrying any number of spring}mass systems, their actual
implementation may be di$cult because of the associated mathematical complexity. Thus,
most examples used to demonstrate the feasibility of the various approaches have been
limited to only one sprung mass.

Recently, GuK rgoK ze [9] presented two approaches to compute the natural frequencies of
a Euler}Bernoulli beam to which several spring}mass systems are attached in span. He "rst
used the Lagrange multipliers formalism introduced by Dowell [1] to obtain the
characteristic determinant, which can then be used to compute the natural frequencies of
the combined structure. While the results are concise, the inherent nature of the formalism
misses certain natural frequencies when the spring}mass systems are located at the nodes of
the beam. In addition, the Lagrange multipliers approach can be fairly laborious to apply,
because one needs to introduce S Lagrange multipliers and to formulate S constraint
equations, where S is the number of sprung masses. GuK rgoK ze then used the assumed-modes
method [10], in addition to a co-ordinate transformation, to obtain yet another
characteristic determinant that can be used to solve for the natural frequencies. The latter
approach, while simple, leads to a characteristic determinant of size (N#S)](N#S),
where N represents the number of modes used in the assumed modes expansion.

Wu and Chou [11] introduced a numerical technique to obtain the exact solutions for the
lower modes of vibration of a uniform beam carrying any number of sprung masses with
various boundary conditions. They determined the coe$cient matrix for a beam element,
and used the conventional assembly technique for the "nite-element method to determine
the overall coe$cient matrix, from which they solved for the natural frequencies and mode
shapes of the entire structure. While their approach leads to the exact solution, their scheme
is highly numerically intensive, since a characteristic determinant of size 5S#4 needs to be
solved. Moreover, the element coe$cient matrix that they derived is strictly valid for
a beam. Thus, their results cannot be easily extended to other linear structures, and more
work is needed before their scheme can be applied to other types of elastica.

In this technical note, the discretized governing equations for a linear elastica carrying
a number of sprung masses (see Figure 1) are "rst obtained by using the common
assumed-modes method. Using this approach, the natural frequencies squared correspond
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Figure 1. An arbitrarily supported, linear elastic structure carrying any number of sprung masses.
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to the eigenvalues of a generalized eigenvalue problem. By manipulating the characteristic
determinant associated with the generalized eigenvalue problem, it can be algebraically
reduced to one of a smaller size, thus providing an alternative means to solve for the natural
frequencies of the combined system. The advantages of the proposed scheme will be
discussed and highlighted, and numerical examples will be provided to illustrate the utility
of the new formalism.

2. THEORY

Consider the free vibration of an arbitrarily supported, linear structure carrying S-sprung
masses as shown in Figure 1. Using the assumed-modes method, the physical de#ection of
the structure at a point x is given by
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where the M
i
are the generalized masses, m

i
is the mass of the ith oscillator, z

i
(t) is its

displacement, S is the total number of sprung masses attached to the elastica, and an
overdot denotes a derivative with respect to time. The total potential energy is given by
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where the K
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are the generalized spring constants, k
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is the spring sti!ness of the ith
oscillator, and w (x
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, t) represents the lateral displacement of the beam at x
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.
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Applying Lagrange's equations and assuming simple harmonic motion,
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where j"J!1 and u is the natural frequency, the frequency equation for the system of
Figure 1 can be obtained by solving the following generalized eigenvalue problem:
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vector of mass displacements, and the S]S matrices [m] and [k] are both diagonal of the
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and the N]S matrix [R] is given by
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Thus, [M] is a diagonal matrix and [K] is a diagonal matrix modi"ed by S rank one
matrices. Once the linear elastic structure and the attachment locations are speci"ed, and
the spring}mass parameters are given, the natural frequencies of the combined system can
be readily obtained by solving the generalized eigenvalue problem of equation (5).

At "rst glance, it appears that a frequency analysis for the system of Figure 1 requires the
solution of a generalized eigenvalue problem of size (N#S)](N#S ) (see equation (5)).
However, by simple algebraic manipulation, the generalized eigenvalue problem (5) can be
reduced to one of smaller size. From equation (5), one obtains the following expressions for
the z6

i
:
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Substituting the expressions of equation (10) into equation (5), the following generalized
eigenvalue problem, of size N]N, is obtained:
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Expanding equation (11), the natural frequencies of the system are given by the solution of
the characteristic determinant
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which can be shown [12] to be identical to
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and dj
i

represents the Kronecker delta. When u2OK
i
/M

i
, equation (14) reduces to

det [B]"0, (16)

the same result as equation (25) that GuK rgoK ze [9] obtained by using the Lagrange
multipliers formalism.

Comparing equations (14) and (16), one immediately notices the absence of the product
terms. These product terms are important, for they serve as a remainder that when the
attachment locations for the sprung masses coincide with the nodes of any component
mode, /

i
(x), some of the natural frequencies of the combined system will be identical to

those of the linear structure. In this case, equation (14) must be used since equation (16) fails
to generate all of the natural frequencies of the combined system. Dowell [13] remedied this
di$culty by arti"cially disassembling the structure, which then allowed him to recover the
missing natural frequencies. Using equation (14), on the other hand, one obtains all of the
natural frequencies of a linear elastica carrying any number of sprung masses, independent
of the attachment locations. Additionally, using the present scheme, one eliminates the
mathematical complexity associated with the application of the Lagrange multipliers
approach.

Equation (14) also has certain conceptual advantages over equation (5). Speci"cally, it
can be easily modi"ed to compute the natural frequencies of a linear structure carrying
S lumped masses or attached to S grounded elastic supports. When k

i
tends to in"nity, then

the p
i
of equation (12) reduces to

p
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"!m
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u2 (17)

and the system of Figure 1 simpli"es to a linear elastica with S rigidly attached masses.
Similarly, when m

i
approaches in"nity, the p

i
of equation (12) reduces to

p
i
"k
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(18)

and the system of Figure 1 simpli"es to a linear structure attached to S grounded springs. It
should be noted that the eigenvalue problems to these systems cannot be easily extracted
from equation (5).
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3. RESULTS

The proposed scheme of determining the natural frequencies of a linear elastica carrying
any number of sprung masses o!ers numerous advantages. Firstly, equation (14) is simple to
code. Given the eigenfunctions, /

i
(x), of the linear elastica, the parameters for the spring}mass

systems, m
i
and k

i
, and the attachment locations, x

i
, equation (14) can be easily programmed.

Secondly, it can be extended to accommodate any linear elastic structure with any arbitrary
boundary conditions by simply using the appropriate eigenfunctions. Finally, equation (14)
can be easily modi"ed to analyze a linear structure with any number of rigidly attached
masses or any number of grounded springs. To show the utility of the proposed scheme, the
natural frequencies of a uniform "xed}free and simply supported Euler}Bernoulli beam
carrying 1, 3 and 5 sprung masses are computed, and the results are compared with published
values. In all of the subsequent numerical examples, a double precision version of the CMLIB
[14] routine zeroin was used to "nd the roots of the characteristic determinant.

When the beam is "xed}free, let /
i
(x) be the normalized (with respect to the mass per unit

nlength, o, of the beam) eigenfunctions of a uniform "xed}free beam given by
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such that the generalized masses and sti!nesses of the beam are
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where E is the Young's modulus, I is the moment of inertia of the cross-section of the beam,
and b

i
¸ satis"es the transcendental equation
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When the beam is simply supported, let /
i
(x) be the normalized eigenfunctions of a uniform

simply supported beam given by
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such that the generalized masses and sti!nesses of the beam become
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Consider "rst the case of a uniform Euler}Bernoulli beam carrying one spring}mass
system (of sti!ness k

1
and mass m

1
) at x

1
, in which case equation (14) reduces to the simple

frequency equation

N
<
i/1

(K
i
!u2M

i
) A1#

k
1
m

1
u2

m
1
u2!k

1

N
+
r/1

/2
i
(x

1
)

K
i
!u2M

i
B"0. (24)

When the attachment location, x
1
, does not coincide with any nodes of the eigenfunctions of

the beam, equation (24) simpli"es to
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which corresponds to equation (7a) that Dowell derived in reference [1].
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When the beam is cantilevered, /
i
(x) is given by equation (19), and the natural

frequencies can be obtained by solving either equation (24) or equation (25), depending on
the attachment location. Table 1 compares the "rst "ve natural frequencies obtained by
using the proposed formalism, for x

1
"0)75¸, k

1
"3)0EI/¸3 and m

1
"0)2o¸, and those

given in reference [11]. Since the attachment location, x
1
"0)75¸, does not coincide with

the node of any of the component modes of a uniform "xed}free beam, equation (25) was
used to extract the natural frequencies of the system. From Table 1, note the excellent
agreement between the results of equation (25), for N"5, and the solution given in
reference [11]. For N"14, the agreement between the two becomes even better.

When the beam is simply supported, /
i
(x) is given by equation (22), and the natural

frequencies can be obtained by solving either equation (24) or equation (25), depending
again on the attachment location. Table 2 compares the results given in reference [11] and
those obtained by using the proposed approach, for the same set of system parameters as
those listed in Table 1. Because x

1
"0)75¸ coincides with a node of the fourth eigenfunction

of a simply supported beam, equation (24) was used to extract the natural frequencies, since
the fourth natural frequency of a simply supported beam will coincide with a natural
frequency of the combined structure. Dowell [1] noted that if a spring}mass system (which
by itself has a rigid body degree of freedom) is attached to another system, a new natural
frequency appears between the original pair of frequencies nearest the oscillator frequency.
Thus, as expected, for the spring}mass parameters chosen, u

5
of the combined system

coincides with the fourth natural frequency of a simply supported beam, (u
4
)
"%!.

"(4n)2

JEI/o¸4. Table 2 shows that the agreement between the results of equation (24), for N"5,
and the solution given in reference [11] is excellent. Like before, the agreement between the
two is improved for N"14.
TABLE 2

¹he ,rst ,ve natural frequencies of a simply supported, uniform Euler}Bernoulli beam carrying
one sprung mass at x

1
"0)75¸. ¹he system parameters are identical to those of ¹able 1

Nat. Freq. (rad/s) Reference [11] Present (N"5) Present (N"14)

u
1

243)8579 243)8671 243)8582
u

2
645)2030 645)2040 645)2030

u
3

2540)5306 2540)5311 2540)5307
u

4
5706)1886 5706)1888 5706)1887

u
5

10142)4012 10142)4018 10142)4018

TABLE 1

¹he ,rst ,ve natural frequencies of a ,xed}free, uniform Euler}Bernoulli beam carrying one
sprung mass at x

1
"0)75¸. ¹he mass and spring sti+ness are m

1
"0)2o¸ and k

1
"3)0EI/¸3,

respectively, where EI/¸3"6)34761]104N/m and o¸"15)3875 kg

Nat. Freq. (rad/s) Reference [11] Present (N"5) Present (N"14)

u
1

174)2030 174)2047 174)2030
u

2
322)1513 322)1596 322)1518

u
3

1415)5524 1415)5526 1415)5526
u

4
3964)7796 3964)7798 3964)7797

u
5

7766)4614 7766)4617 7766)4616
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Consider now the case where multiple sprung masses are attached to a uniform
Euler}Bernoulli beam. Because of its simplicity, the characteristic determinant of equation
(14) can be easily coded to handle multiple spring}mass systems. Tables 3 and 4 compare
the "rst "ve natural frequencies of "xed}free and simply supported beams, respectively,
carrying three sprung masses, obtained by using the proposed formalism and that given in
reference [11], for x

1
"0)1¸, k

1
"3)0EI/¸3, m

1
"0)2o¸; x

2
"0)4¸, k

2
"4)5EI/¸3,

m
2
"0)5o¸; x

3
"0)8¸, k

3
"6)0EI/¸3, m

3
"1)0o¸. Because the attachment locations do

not coincide with the nodes of any of the component modes of a uniform "xed}free beam,
equation (16) was used to extract the natural frequencies of the system. From Tables 3 and 4,
note the excellent agreement between the results of equation (16), for N"5, and the
solution given in reference [11]. The agreement between the two results becomes even better
as N is increased to 14.

Tables 5 and 6 show the "rst "ve natural frequencies of "xed}free and simply supported
beams, respectively, carrying "ve sprung masses, obtained by using the proposed scheme
and that outlined in reference [11], for x

1
"0)1¸, k

1
"3)0EI/¸3, m

1
"0)2o¸; x

2
"0)2¸,

k
2
"3)5EI/¸3, m

2
"0)3o¸; x

3
"0)4¸, k

3
"4)5EI/¸3, m

3
"0)5o¸; x

4
"0)6¸,

k
4
"5)0EI/¸3, m

4
"0)65o¸; x

5
"0)8¸, k

5
"6)0EI/¸3, m

5
"1)0o¸. Like before, the

attachment locations are distinct from the nodes of any of the component modes of
a uniform simply supported beam. Thus, equation (16) was used to determine the natural
frequencies of the system. From Tables 5 and 6, note the excellent agreement between the
results of equation (16), for N"5, and those given in reference [11]. As N is increased to 14,
the agreement between the two results is improved.

As a last example, consider a "xed}free uniform Euler}Bernoulli beam to which two
grounded springs and one lumped mass are attached as shown in Figure 2, for x

1
"0)3¸,
TABLE 4

¹he ,rst ,ve natural frequencies of a simply supported, uniform Euler}Bernoulli beam carrying
three sprung masses. ¹he system parameters are identical to those of ¹able 3

Nat. Freq. (rad/s) Reference [11] Present (N"5) Present (N"14)

u
1

152)7341 152)7438 152)7345
u

2
185)0950 185)1045 185)0954

u
3

247)8314 247)8397 247)8319
u

4
677)5961 677)6032 677)5963

u
5

2548)6577 2548)6593 2548)6579

TABLE 3

¹he ,rst ,ve natural frequencies of a ,xed}free, uniform Euler}Bernoulli beam carrying three
sprung masses, for x

1
"0)1¸, k

1
"3)0EI/¸3, m

1
"0)2o¸; x

2
"0)4¸, k

2
"4)5EI/¸3,

m
2
"0)5o¸; x

3
"0)8¸, k

3
"6)0EI/¸3, m

3
"1)0o¸. ¹he system parameters are

EI/¸3"6)34761]104N/m and o¸"15)3875 kg

Nat. Freq. (rad/s) Reference [11] Present (N"5) Present (N"14)

u
1

102)7944 102)7962 102)7946
u

2
188)7347 188)7433 188)7352

u
3

248)6439 248)6613 248)6443
u

4
349)1161 349)1262 349)1170

u
5

1427)9521 1427)9535 1427)9523



TABLE 5

¹he ,rst ,ve natural frequencies of a ,xed}free, uniform Euler}Bernoulli beam carrying ,ve
sprung masses, for x

1
"0)1¸, k

1
"3)0EI/¸3, m

1
"0)2o¸; x

2
"0)2¸, k

2
"3)5EI/¸3,

m
2
"0)3o¸; x

3
"0)4¸, k

3
"4)5EI/¸3, m

3
"0)5o¸; x

4
"0)6¸, k

4
"5)0EI/¸3,

m
4
"0)65o¸; x

5
"0)8¸, k

5
"6)0EI/¸3, m

5
"1)0o¸. ¹he system parameters are

EI/¸3"6)34761]104N/m and o¸"15)3875 kg

Nat. Freq. (rad/s) Reference [11] Present (N"5) Present (N"14)

u
1

97)4880 97)4893 97)4881
u

2
171)6770 171)6857 171)6776

u
3

190)1782 190)1873 190)1787
u

4
218)7927 218)7992 218)7931

u
5

248)6537 248)6714 248)6542

TABLE 6

¹he ,rst ,ve natural frequencies of a simply supported, uniform Euler}Bernoulli beam carrying
,ve sprung masses. ¹he system parameters are identical to those of ¹able 5

Nat. Freq. (rad/s) Reference [11] Present (N"5) Present (N"14)

u
1

150)9571 150)9642 150)9575
u

2
169)4729 169)4831 169)4733

u
3

187)9147 187)9275 187)9151
u

4
217)1279 217)1365 217)1283

u
5

247)9868 247)9964 247)9872

TABLE 7

¹he ,rst ,ve natural frequencies of the system of Figure 2, for N"14, x
1
"0)3¸,

k
1
"12)0EI/¸3; x

2
"0)6o¸, m

2
"2)0o¸; x

3
"0)8¸, k

3
"10)0EI/¸3. ¹he system para-

meters are EI/¸3"6)34761]104N/m and o¸"15)3875 kg

Nat. Freq. (rad/s) Approach I Approach II

u
1

223)4154 223)4154
u

2
1011)2493 1011)2249

u
3

3460)3277 3460)1041
u

4
7262)8276 7261)8118

u
5

10589)6520 10584)3954
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k
1
"12)0EI/¸3; x

2
"0)6¸, m

2
"2)0o¸; x

3
"0)8¸, k

3
"10)0EI/¸3. Because the

attachment locations do not coincide with the nodes of any component modes, the natural
frequencies of Figure 2 can be readily obtained by using equation (16). Using equation (16)
as basis, two possible solution schemes are possible. In the "rst approach, the expressions
for p

i
of equation (12) can be modi"ed in accordance with either equation (17) or equation

(18), depending on whether the mass is rigidly attached or the spring is grounded
respectively. Alternatively, equation (12) can be used directly as it is, but simply let m

1
PR

and m
3
PR to re#ect that springs k

1
and k

3
are grounded, and let k

2
PR to re#ect that

mass m
2
is rigidly attached to the beam. Table 7 compares the natural frequencies of the two

approaches. For the second scheme, because it is not possible numerically to let the system



Figure 2. Uniform "xed}free Euler}Bernoulli beam with two grounded springs and one rigidly attached lumped
mass.
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parameters approach in"nity, they are chosen such that m
1
"m

3
"1]104o¸ and

k
2
"1]104EI/¸3. From Table 7, note the excellent agreement between the two methods.

While both schemes can be used to "nd the approximate natural frequencies of the system
of Figure 2, the second approach is recommended because the p

i
of equation (12) need not

be changed.

4. CONCLUSIONS

An alternative formulation is proposed that can be used to determine the natural
frequencies of a linear elastic structure carrying any number of sprung masses. The
proposed scheme leads to several noticeable advantages. Speci"cally, the proposed
approach leads to a reduced characteristic determinant that is simple to code; it can be
easily extended to accommodate any linear elastic structure with any boundary conditions;
it can be easily modi"ed to analyze a linear structure carrying rigid lumped masses or
attached to grounded elastic supports. Numerical experiments were performed to validate
the proposed approach, and excellent agreements were found between the proposed scheme
and known solutions published in the literature.
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